TOP CATEGORY: Chemicals & Materials | Life Sciences | Banking & Finance | ICT Media

Cloud-Native Time Series Database Market, Global Outlook and Forecast 2024-2030

Cloud-Native Time Series Database Market, Global Outlook and Forecast 2024-2030

  • Category:Services
  • Published on : 26 October 2025
  • Pages :96
  • Formats:
  • Report Code:SMR-8059935

MARKET INSIGHTS

The global cloud-native time series database market size was valued at USD 1.43 billion in 2023. The market is projected to grow from USD 1.53 billion in 2024 to USD 2.23 billion by 2030, exhibiting a CAGR of 6.7% during the forecast period.

Cloud-native time series databases are specialized database systems designed for storing, managing, and analyzing time-stamped data streams with native cloud capabilities. These solutions leverage containerization, microservices, and elastic cloud infrastructure to handle high-velocity data from IoT devices, financial systems, and operational technology. Unlike traditional databases, they offer horizontal scalability, automated lifecycle management, and real-time analytics integration.

The market growth is primarily driven by increasing IoT adoption, with over 29 billion connected devices expected by 2030, generating massive time series data volumes. Furthermore, demand for real-time analytics in financial services and the energy sector is accelerating adoption. Major cloud providers like Amazon Timestream and Microsoft Azure Data Explorer continue to enhance their offerings, while specialist vendors such as InfluxData and Timescale innovate with open-source alternatives.

MARKET DYNAMICS

MARKET DRIVERS

Exponential Growth of IoT Devices Fueling Demand for Time Series Data Management

The proliferation of IoT devices across industries is creating unprecedented volumes of time series data that require specialized database solutions. Currently, there are over 15 billion connected IoT devices globally, generating continuous streams of sensor readings, telemetry, and operational metrics. Cloud-native time series databases provide the ideal architecture for handling this data deluge, offering horizontal scalability and real-time processing capabilities. Industries from manufacturing to energy management are adopting these solutions to unlock actionable insights from their IoT ecosystems. The global IoT market is projected to grow at 10% annually through 2030, directly correlating with increased demand for sophisticated time series data management.

Digital Transformation Initiatives Accelerating Cloud Database Adoption

Enterprise digital transformation efforts are driving widespread migration from legacy systems to cloud-native architectures. Organizations investing in modern data infrastructure are prioritizing solutions that offer elastic scaling, reduced operational overhead, and seamless integration with analytics platforms. Cloud-native time series databases perfectly align with these requirements, particularly for use cases involving real-time monitoring, predictive maintenance, and operational analytics. Recent surveys indicate that 75% of enterprises now consider cloud-native databases as strategic investments for their digital roadmaps. This shift is particularly evident in financial services and industrial sectors, where time series data analysis provides competitive advantages in risk modeling and equipment performance optimization.

The push toward digital transformation is further amplified by the need for business continuity and remote operations, especially in the post-pandemic era where distributed workforces require cloud-based data access.

Financial institutions analyzing high-frequency trading data have reported 40% improvement in processing speeds after migrating to cloud-native time series platforms.

Additionally, the integration of machine learning capabilities with time series databases is creating new value propositions, with leading vendors now offering built-in anomaly detection and forecasting functions.

MARKET RESTRAINTS

Data Governance and Compliance Challenges Impeding Enterprise Adoption

While cloud-native time series databases offer compelling advantages, many organizations face significant hurdles in adoption due to regulatory requirements and data sovereignty concerns. Industries handling sensitive information, such as healthcare and financial services, must navigate complex compliance landscapes when implementing cloud-based solutions. Data residency requirements, cross-border transfer restrictions, and industry-specific regulations create implementation challenges that can delay or prevent adoption. These constraints are particularly problematic for global enterprises that need to maintain data in specific geographic regions while still achieving the benefits of cloud scalability.

Integration challenges with existing on-premises systems present another barrier to adoption. Many organizations have invested heavily in legacy infrastructure and face technical and budgetary constraints when migrating to cloud-native solutions. The transition often requires significant architectural changes and can introduce temporary performance bottlenecks during the migration period. These factors can lead to hesitation among risk-averse enterprises, despite the long-term benefits of cloud-native platforms.

MARKET CHALLENGES

Technical Complexity and Specialized Skill Requirements

The implementation and optimization of cloud-native time series databases require specialized expertise that is in limited supply across industries. Database administrators and architects need to master both traditional database concepts and cloud-native paradigms such as distributed systems, container orchestration, and microservices architectures. This skills gap is exacerbated by the rapid evolution of cloud technologies, making it challenging for IT teams to keep pace with best practices. Organizations often struggle to find professionals capable of managing the full lifecycle of these systems, from initial deployment to ongoing performance tuning.

Performance optimization presents another significant challenge in production environments. While cloud-native architectures theoretically offer unlimited scalability, achieving optimal performance requires careful schema design, indexing strategies, and query optimization. Many organizations encounter unexpected performance issues when scaling beyond initial pilot projects, requiring expensive consulting engagements or architecture revisions. These technical hurdles can significantly impact total cost of ownership and delay time-to-value for enterprise deployments.

MARKET OPPORTUNITIES

Convergence With AI/ML Creating New Analytics Capabilities

The integration of artificial intelligence and machine learning with time series databases is opening transformative opportunities across industries. Cloud-native platforms are uniquely positioned to support advanced analytics workloads due to their ability to process large volumes of sequential data in real time. Use cases such as predictive maintenance in manufacturing, fraud detection in finance, and personalized healthcare monitoring are driving demand for solutions that combine time series storage with built-in analytics capabilities. Early adopters of these integrated platforms have reported reductions in anomaly detection latency from hours to seconds, enabling more proactive decision-making.

The development of specialized time series machine learning libraries by major cloud providers has significantly lowered the barrier to entry for implementing these advanced analytics capabilities. This democratization of AI/ML technologies is particularly impactful for small and medium-sized enterprises that previously lacked the resources to develop custom solutions. As these technologies mature, we're witnessing a shift from simple anomaly detection to sophisticated predictive modeling and prescriptive analytics workflows embedded directly within database platforms.

Edge computing deployments represent another significant growth area for cloud-native time series solutions. The ability to synchronize edge-collected time series data with centralized cloud repositories enables hybrid architectures that combine low-latency local processing with cloud-scale analytics. This is particularly relevant for industries such as utilities and transportation, where real-time decision-making at the edge must be complemented by historical trend analysis in the cloud.

Segment Analysis:

By Type

Distributed Architecture Segment Dominates Due to Superior Scalability and High Availability

The market is segmented based on architecture into:

  • Distributed Architecture

    • Subtypes: Kubernetes-based, Serverless, and others

  • Single Node Architecture

By Application

IoT Data Management Leads Due to Exponential Growth in Connected Devices

The market is segmented based on application into:

  • Internet of Things (IoT) Data Management

  • Financial Market Monitoring

  • Industrial Asset Monitoring

  • IT Infrastructure Monitoring

  • Others

By Deployment Model

Public Cloud Deployment Shows Strong Adoption Due to Cost Efficiency

The market is segmented based on deployment model into:

  • Public Cloud

  • Private Cloud

  • Hybrid Cloud

By Organization Size

Large Enterprises Remain Key Adopters Due to Complex Data Needs

The market is segmented based on organization size into:

  • Large Enterprises

  • Small & Medium Enterprises

COMPETITIVE LANDSCAPE

Key Industry Players

Cloud Providers Dominate While Specialized Database Vendors Innovate to Compete

The cloud-native time series database market exhibits a dynamic competitive structure, blending dominant hyperscale cloud providers with agile specialized database vendors. Amazon leads the market through AWS Timestream, leveraging its massive cloud infrastructure footprint and seamless integration with other AWS services. With over 40% market share in the cloud infrastructure segment, Amazon's existing customer base gives it a significant advantage in cross-selling time series database solutions.

Microsoft follows closely with Azure Time Series Insights, particularly strong in industrial and manufacturing applications due to its deep IoT integration capabilities. The company's recent enhancements enabling 10x faster queries demonstrate its commitment to performance optimization. Meanwhile, Google's Cloud Bigtable service has gained traction among financial services firms requiring low-latency time series analysis at scale.

Among specialized players, InfluxData remains the pure-play leader with its open-source InfluxDB technology, which consistently ranks as the most popular time series database in developer surveys. The company's recent Series D funding round of $81 million in 2022 underscores investor confidence in its growth trajectory. Timescale's hybrid relational-time series approach has attracted enterprises seeking to combine transactional and time-based analytics, particularly in telecommunications and energy sectors.

New entrants like Redpanda are disrupting the market with stream processing capabilities that complement traditional time series storage, while VictoriaMetrics has gained attention for its resource-efficient architecture appealing to cost-conscious midmarket buyers. The competitive intensity continues to increase as vendors race to add machine learning integrations and real-time alerting features that differentiate their offerings.

List of Key Cloud-Native Time Series Database Providers

CLOUD-NATIVE TIME SERIES DATABASE MARKET TRENDS

Exponential IoT Growth to Drive Demand for Cloud-Native Time Series Databases

The proliferation of IoT devices across industries has become a key driver for cloud-native time series database adoption, with over 30 billion connected devices expected globally by 2025. This massive data generation from sensors and edge devices requires specialized database solutions capable of handling high-velocity time-stamped data streams while maintaining real-time analytics capabilities. Cloud-native architectures are particularly suited for this challenge because they can dynamically scale to accommodate unpredictable data volumes while ensuring low-latency queries. Recent innovations in distributed data sharding and in-memory processing have further enhanced these systems' ability to process millions of data points per second with sub-millisecond response times.

Other Trends

AI-Driven Real-Time Analytics Integration

The integration of machine learning capabilities directly into cloud-native time series databases is transforming how organizations derive value from temporal data. Rather than exporting data for external analysis, modern systems now support in-database ML model execution, enabling anomaly detection, predictive maintenance, and pattern recognition at the data layer. This trend is particularly impactful in financial services where algorithmic trading systems require instantaneous analysis of market data streams, and in manufacturing where predictive maintenance can reduce downtime by 30-40% when implemented with real-time sensor analytics.

Industry Adoption of Hyper-Scalable Cloud Architectures

Enterprises are increasingly migrating time series workloads from traditional on-premise solutions to cloud-native platforms that offer elastic scalability and consumption-based pricing models. This shift is particularly evident in the energy sector, where smart grid implementations generate terabytes of time-series meter data daily, and in telecommunications for network performance monitoring. The ability to automatically scale storage and compute resources in response to fluctuating demands provides significant cost optimization while eliminating capacity planning challenges associated with fixed infrastructure.

Regional Analysis: Cloud-Native Time Series Database Market

North America
North America dominates the global cloud-native time series database market, holding the largest revenue share in 2023. The region's leadership stems from rapid cloud adoption among enterprises, with major cloud providers like AWS, Microsoft Azure, and Google Cloud driving innovation. The U.S. accounts for over 85% of regional demand, fueled by digital transformation across finance, healthcare, and IoT sectors. Strict data compliance requirements (such as HIPAA and SOC 2) are accelerating the shift from legacy systems to cloud-native solutions. While large enterprises lead adoption, mid-market companies are increasingly leveraging these databases for operational analytics. The region benefits from strong vendor ecosystems and early adoption of microservices architectures, though integration complexity remains a challenge for some organizations.

Europe
Europe's market growth is propelled by GDPR compliance needs and the EU Cloud Strategy mandating data sovereignty. Germany and the UK collectively represent nearly 50% of regional adoption, with manufacturing and energy sectors showing particularly strong demand for industrial IoT monitoring solutions. The region exhibits a balanced mix of open-source and commercial database usage, with enterprises prioritizing solutions that offer multi-cloud compatibility. Regulatory emphasis on green cloud computing is influencing vendor selection criteria, favoring database platforms with energy-efficient architectures. While adoption is widespread among large enterprises, cost sensitivity and legacy system dependencies continue slowing migration in Southern and Eastern European markets.

Asia-Pacific
As the fastest-growing regional market, Asia-Pacific benefits from digital infrastructure expansion and smart city initiatives across China, India, and Southeast Asia. China's market alone grew by 22% in 2023 due to government-backed cloud adoption programs and booming eCommerce analytics needs. The region shows distinctive adoption patterns - while large tech firms deploy sophisticated distributed architectures, smaller enterprises prefer single-node solutions due to budget constraints. Japan and South Korea lead in manufacturing applications, whereas India shows strong growth in financial services monitoring. Challenges include varying cloud maturity levels and occasional resistance to replacing traditional time-series solutions, though ecosystem partnerships between global vendors and local providers are helping overcome these barriers.

South America
South America represents an emerging market where adoption is concentrated in Brazil (60% of regional revenue) and Argentina, primarily driven by financial institutions and telecommunications providers. Economic volatility has created a preference for pay-as-you-go cloud database models over capital-intensive on-premise solutions. While interest in cloud-native time series databases is growing, many organizations still rely on basic monitoring tools rather than specialized platforms. The lack of localized vendor support and limited in-house technical expertise pose adoption hurdles, though major cloud providers' regional data center expansions are gradually improving accessibility and performance.

Middle East & Africa
This region shows uneven but promising growth, with the UAE, Saudi Arabia, and South Africa accounting for most deployments. Smart city projects and oil/gas industry monitoring needs are primary adoption drivers, though overall market penetration remains low compared to other regions. Government cloud initiatives and improving connectivity are creating favorable conditions for adoption, especially among enterprises adopting IoT infrastructure. The market faces unique challenges including intermittent cloud service availability in some areas and preference for international vendor solutions over locally developed alternatives. Nevertheless, partnerships between telecom providers and database vendors are helping accelerate market education and implementation capabilities across the region.

Report Scope

This market research report offers a holistic overview of global and regional markets for the forecast period 2025–2032. It presents accurate and actionable insights based on a blend of primary and secondary research.

Key Coverage Areas:

  • Market Overview

    • Global and regional market size (historical & forecast)

    • Growth trends and value/volume projections

  • Segmentation Analysis

    • By product type or category

    • By application or usage area

    • By end-user industry

    • By distribution channel (if applicable)

  • Regional Insights

    • North America, Europe, Asia-Pacific, Latin America, Middle East & Africa

    • Country-level data for key markets

  • Competitive Landscape

    • Company profiles and market share analysis

    • Key strategies: M&A, partnerships, expansions

    • Product portfolio and pricing strategies

  • Technology & Innovation

    • Emerging technologies and R&D trends

    • Automation, digitalization, sustainability initiatives

    • Impact of AI, IoT, or other disruptors (where applicable)

  • Market Dynamics

    • Key drivers supporting market growth

    • Restraints and potential risk factors

    • Supply chain trends and challenges

  • Opportunities & Recommendations

    • High-growth segments

    • Investment hotspots

    • Strategic suggestions for stakeholders

  • Stakeholder Insights

    • Target audience includes manufacturers, suppliers, distributors, investors, regulators, and policymakers

FREQUENTLY ASKED QUESTIONS:

What is the current market size of Global Cloud-Native Time Series Database Market?

-> The Global Cloud-Native Time Series Database market was valued at USD 1,425 million in 2023 and is projected to reach USD 2,225 million by 2030, growing at a CAGR of 6.7% during the forecast period.

Which key companies operate in Global Cloud-Native Time Series Database Market?

-> Key players include Amazon, Microsoft, Google, InfluxData, Timescale, DataStax, QuestDB, OpenTSDB, Redpanda, and VictoriaMetrics, among others.

What are the key growth drivers?

-> Key growth drivers include rising IoT adoption, increasing demand for real-time analytics, cloud infrastructure expansion, and the need for scalable database solutions.

Which region dominates the market?

-> North America currently leads the market, while Asia-Pacific is expected to witness the highest growth rate due to rapid digital transformation.

What are the emerging trends?

-> Emerging trends include integration with AI/ML capabilities, edge computing compatibility, serverless architectures, and enhanced security features for time series data management.

TABLE OF CONTENTS

1 Introduction to Research & Analysis Reports
1.1 Cloud-Native Time Series Database Market Definition
1.2 Market Segments
1.2.1 Segment by Type
1.2.2 Segment by Application
1.3 Global Cloud-Native Time Series Database Market Overview
1.4 Features & Benefits of This Report
1.5 Methodology & Sources of Information
1.5.1 Research Methodology
1.5.2 Research Process
1.5.3 Base Year
1.5.4 Report Assumptions & Caveats
2 Global Cloud-Native Time Series Database Overall Market Size
2.1 Global Cloud-Native Time Series Database Market Size: 2023 VS 2030
2.2 Global Cloud-Native Time Series Database Market Size, Prospects & Forecasts: 2019-2030
2.3 Key Market Trends, Opportunity, Drivers and Restraints
2.3.1 Market Opportunities & Trends
2.3.2 Market Drivers
2.3.3 Market Restraints
3 Company Landscape
3.1 Top Cloud-Native Time Series Database Players in Global Market
3.2 Top Global Cloud-Native Time Series Database Companies Ranked by Revenue
3.3 Global Cloud-Native Time Series Database Revenue by Companies
3.4 Top 3 and Top 5 Cloud-Native Time Series Database Companies in Global Market, by Revenue in 2023
3.5 Global Companies Cloud-Native Time Series Database Product Type
3.6 Tier 1, Tier 2, and Tier 3 Cloud-Native Time Series Database Players in Global Market
3.6.1 List of Global Tier 1 Cloud-Native Time Series Database Companies
3.6.2 List of Global Tier 2 and Tier 3 Cloud-Native Time Series Database Companies
4 Sights by Product
4.1 Overview
4.1.1 Segmentation by Type - Global Cloud-Native Time Series Database Market Size Markets, 2023 & 2030
4.1.2 Distributed Architecture
4.1.3 Single Node Architecture
4.2 Segmentation by Type - Global Cloud-Native Time Series Database Revenue & Forecasts
4.2.1 Segmentation by Type - Global Cloud-Native Time Series Database Revenue, 2019-2024
4.2.2 Segmentation by Type - Global Cloud-Native Time Series Database Revenue, 2025-2030
4.2.3 Segmentation by Type - Global Cloud-Native Time Series Database Revenue Market Share, 2019-2030
5 Sights by Application
5.1 Overview
5.1.1 Segmentation by Application - Global Cloud-Native Time Series Database Market Size, 2023 & 2030
5.1.2 Large Enterprises
5.1.3 Medium Enterprises
5.1.4 Small Enterprises
5.2 Segmentation by Application - Global Cloud-Native Time Series Database Revenue & Forecasts
5.2.1 Segmentation by Application - Global Cloud-Native Time Series Database Revenue, 2019-2024
5.2.2 Segmentation by Application - Global Cloud-Native Time Series Database Revenue, 2025-2030
5.2.3 Segmentation by Application - Global Cloud-Native Time Series Database Revenue Market Share, 2019-2030
6 Sights by Region
6.1 By Region - Global Cloud-Native Time Series Database Market Size, 2023 & 2030
6.2 By Region - Global Cloud-Native Time Series Database Revenue & Forecasts
6.2.1 By Region - Global Cloud-Native Time Series Database Revenue, 2019-2024
6.2.2 By Region - Global Cloud-Native Time Series Database Revenue, 2025-2030
6.2.3 By Region - Global Cloud-Native Time Series Database Revenue Market Share, 2019-2030
6.3 North America
6.3.1 By Country - North America Cloud-Native Time Series Database Revenue, 2019-2030
6.3.2 United States Cloud-Native Time Series Database Market Size, 2019-2030
6.3.3 Canada Cloud-Native Time Series Database Market Size, 2019-2030
6.3.4 Mexico Cloud-Native Time Series Database Market Size, 2019-2030
6.4 Europe
6.4.1 By Country - Europe Cloud-Native Time Series Database Revenue, 2019-2030
6.4.2 Germany Cloud-Native Time Series Database Market Size, 2019-2030
6.4.3 France Cloud-Native Time Series Database Market Size, 2019-2030
6.4.4 U.K. Cloud-Native Time Series Database Market Size, 2019-2030
6.4.5 Italy Cloud-Native Time Series Database Market Size, 2019-2030
6.4.6 Russia Cloud-Native Time Series Database Market Size, 2019-2030
6.4.7 Nordic Countries Cloud-Native Time Series Database Market Size, 2019-2030
6.4.8 Benelux Cloud-Native Time Series Database Market Size, 2019-2030
6.5 Asia
6.5.1 By Region - Asia Cloud-Native Time Series Database Revenue, 2019-2030
6.5.2 China Cloud-Native Time Series Database Market Size, 2019-2030
6.5.3 Japan Cloud-Native Time Series Database Market Size, 2019-2030
6.5.4 South Korea Cloud-Native Time Series Database Market Size, 2019-2030
6.5.5 Southeast Asia Cloud-Native Time Series Database Market Size, 2019-2030
6.5.6 India Cloud-Native Time Series Database Market Size, 2019-2030
6.6 South America
6.6.1 By Country - South America Cloud-Native Time Series Database Revenue, 2019-2030
6.6.2 Brazil Cloud-Native Time Series Database Market Size, 2019-2030
6.6.3 Argentina Cloud-Native Time Series Database Market Size, 2019-2030
6.7 Middle East & Africa
6.7.1 By Country - Middle East & Africa Cloud-Native Time Series Database Revenue, 2019-2030
6.7.2 Turkey Cloud-Native Time Series Database Market Size, 2019-2030
6.7.3 Israel Cloud-Native Time Series Database Market Size, 2019-2030
6.7.4 Saudi Arabia Cloud-Native Time Series Database Market Size, 2019-2030
6.7.5 UAE Cloud-Native Time Series Database Market Size, 2019-2030
7 Companies Profiles
7.1 Amazon
7.1.1 Amazon Corporate Summary
7.1.2 Amazon Business Overview
7.1.3 Amazon Cloud-Native Time Series Database Major Product Offerings
7.1.4 Amazon Cloud-Native Time Series Database Revenue in Global Market (2019-2024)
7.1.5 Amazon Key News & Latest Developments
7.2 Microsoft
7.2.1 Microsoft Corporate Summary
7.2.2 Microsoft Business Overview
7.2.3 Microsoft Cloud-Native Time Series Database Major Product Offerings
7.2.4 Microsoft Cloud-Native Time Series Database Revenue in Global Market (2019-2024)
7.2.5 Microsoft Key News & Latest Developments
7.3 Google
7.3.1 Google Corporate Summary
7.3.2 Google Business Overview
7.3.3 Google Cloud-Native Time Series Database Major Product Offerings
7.3.4 Google Cloud-Native Time Series Database Revenue in Global Market (2019-2024)
7.3.5 Google Key News & Latest Developments
7.4 InfluxData
7.4.1 InfluxData Corporate Summary
7.4.2 InfluxData Business Overview
7.4.3 InfluxData Cloud-Native Time Series Database Major Product Offerings
7.4.4 InfluxData Cloud-Native Time Series Database Revenue in Global Market (2019-2024)
7.4.5 InfluxData Key News & Latest Developments
7.5 Timescale
7.5.1 Timescale Corporate Summary
7.5.2 Timescale Business Overview
7.5.3 Timescale Cloud-Native Time Series Database Major Product Offerings
7.5.4 Timescale Cloud-Native Time Series Database Revenue in Global Market (2019-2024)
7.5.5 Timescale Key News & Latest Developments
7.6 DataStax
7.6.1 DataStax Corporate Summary
7.6.2 DataStax Business Overview
7.6.3 DataStax Cloud-Native Time Series Database Major Product Offerings
7.6.4 DataStax Cloud-Native Time Series Database Revenue in Global Market (2019-2024)
7.6.5 DataStax Key News & Latest Developments
7.7 QuestDB
7.7.1 QuestDB Corporate Summary
7.7.2 QuestDB Business Overview
7.7.3 QuestDB Cloud-Native Time Series Database Major Product Offerings
7.7.4 QuestDB Cloud-Native Time Series Database Revenue in Global Market (2019-2024)
7.7.5 QuestDB Key News & Latest Developments
7.8 OpenTSDB
7.8.1 OpenTSDB Corporate Summary
7.8.2 OpenTSDB Business Overview
7.8.3 OpenTSDB Cloud-Native Time Series Database Major Product Offerings
7.8.4 OpenTSDB Cloud-Native Time Series Database Revenue in Global Market (2019-2024)
7.8.5 OpenTSDB Key News & Latest Developments
7.9 Redpanda
7.9.1 Redpanda Corporate Summary
7.9.2 Redpanda Business Overview
7.9.3 Redpanda Cloud-Native Time Series Database Major Product Offerings
7.9.4 Redpanda Cloud-Native Time Series Database Revenue in Global Market (2019-2024)
7.9.5 Redpanda Key News & Latest Developments
7.10 VictoriaMetrics
7.10.1 VictoriaMetrics Corporate Summary
7.10.2 VictoriaMetrics Business Overview
7.10.3 VictoriaMetrics Cloud-Native Time Series Database Major Product Offerings
7.10.4 VictoriaMetrics Cloud-Native Time Series Database Revenue in Global Market (2019-2024)
7.10.5 VictoriaMetrics Key News & Latest Developments
8 Conclusion
9 Appendix
9.1 Note
9.2 Examples of Clients
9.3 Disclaimer

LIST OF TABLES & FIGURES

List of Tables
Table 1. Cloud-Native Time Series Database Market Opportunities & Trends in Global Market
Table 2. Cloud-Native Time Series Database Market Drivers in Global Market
Table 3. Cloud-Native Time Series Database Market Restraints in Global Market
Table 4. Key Players of Cloud-Native Time Series Database in Global Market
Table 5. Top Cloud-Native Time Series Database Players in Global Market, Ranking by Revenue (2023)
Table 6. Global Cloud-Native Time Series Database Revenue by Companies, (US$, Mn), 2019-2024
Table 7. Global Cloud-Native Time Series Database Revenue Share by Companies, 2019-2024
Table 8. Global Companies Cloud-Native Time Series Database Product Type
Table 9. List of Global Tier 1 Cloud-Native Time Series Database Companies, Revenue (US$, Mn) in 2023 and Market Share
Table 10. List of Global Tier 2 and Tier 3 Cloud-Native Time Series Database Companies, Revenue (US$, Mn) in 2023 and Market Share
Table 11. Segmentation by Type � Global Cloud-Native Time Series Database Revenue, (US$, Mn), 2023 & 2030
Table 12. Segmentation by Type - Global Cloud-Native Time Series Database Revenue (US$, Mn), 2019-2024
Table 13. Segmentation by Type - Global Cloud-Native Time Series Database Revenue (US$, Mn), 2025-2030
Table 14. Segmentation by Application� Global Cloud-Native Time Series Database Revenue, (US$, Mn), 2023 & 2030
Table 15. Segmentation by Application - Global Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2024
Table 16. Segmentation by Application - Global Cloud-Native Time Series Database Revenue, (US$, Mn), 2025-2030
Table 17. By Region� Global Cloud-Native Time Series Database Revenue, (US$, Mn), 2023 & 2030
Table 18. By Region - Global Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2024
Table 19. By Region - Global Cloud-Native Time Series Database Revenue, (US$, Mn), 2025-2030
Table 20. By Country - North America Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2024
Table 21. By Country - North America Cloud-Native Time Series Database Revenue, (US$, Mn), 2025-2030
Table 22. By Country - Europe Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2024
Table 23. By Country - Europe Cloud-Native Time Series Database Revenue, (US$, Mn), 2025-2030
Table 24. By Region - Asia Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2024
Table 25. By Region - Asia Cloud-Native Time Series Database Revenue, (US$, Mn), 2025-2030
Table 26. By Country - South America Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2024
Table 27. By Country - South America Cloud-Native Time Series Database Revenue, (US$, Mn), 2025-2030
Table 28. By Country - Middle East & Africa Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2024
Table 29. By Country - Middle East & Africa Cloud-Native Time Series Database Revenue, (US$, Mn), 2025-2030
Table 30. Amazon Corporate Summary
Table 31. Amazon Cloud-Native Time Series Database Product Offerings
Table 32. Amazon Cloud-Native Time Series Database Revenue (US$, Mn) & (2019-2024)
Table 33. Amazon Key News & Latest Developments
Table 34. Microsoft Corporate Summary
Table 35. Microsoft Cloud-Native Time Series Database Product Offerings
Table 36. Microsoft Cloud-Native Time Series Database Revenue (US$, Mn) & (2019-2024)
Table 37. Microsoft Key News & Latest Developments
Table 38. Google Corporate Summary
Table 39. Google Cloud-Native Time Series Database Product Offerings
Table 40. Google Cloud-Native Time Series Database Revenue (US$, Mn) & (2019-2024)
Table 41. Google Key News & Latest Developments
Table 42. InfluxData Corporate Summary
Table 43. InfluxData Cloud-Native Time Series Database Product Offerings
Table 44. InfluxData Cloud-Native Time Series Database Revenue (US$, Mn) & (2019-2024)
Table 45. InfluxData Key News & Latest Developments
Table 46. Timescale Corporate Summary
Table 47. Timescale Cloud-Native Time Series Database Product Offerings
Table 48. Timescale Cloud-Native Time Series Database Revenue (US$, Mn) & (2019-2024)
Table 49. Timescale Key News & Latest Developments
Table 50. DataStax Corporate Summary
Table 51. DataStax Cloud-Native Time Series Database Product Offerings
Table 52. DataStax Cloud-Native Time Series Database Revenue (US$, Mn) & (2019-2024)
Table 53. DataStax Key News & Latest Developments
Table 54. QuestDB Corporate Summary
Table 55. QuestDB Cloud-Native Time Series Database Product Offerings
Table 56. QuestDB Cloud-Native Time Series Database Revenue (US$, Mn) & (2019-2024)
Table 57. QuestDB Key News & Latest Developments
Table 58. OpenTSDB Corporate Summary
Table 59. OpenTSDB Cloud-Native Time Series Database Product Offerings
Table 60. OpenTSDB Cloud-Native Time Series Database Revenue (US$, Mn) & (2019-2024)
Table 61. OpenTSDB Key News & Latest Developments
Table 62. Redpanda Corporate Summary
Table 63. Redpanda Cloud-Native Time Series Database Product Offerings
Table 64. Redpanda Cloud-Native Time Series Database Revenue (US$, Mn) & (2019-2024)
Table 65. Redpanda Key News & Latest Developments
Table 66. VictoriaMetrics Corporate Summary
Table 67. VictoriaMetrics Cloud-Native Time Series Database Product Offerings
Table 68. VictoriaMetrics Cloud-Native Time Series Database Revenue (US$, Mn) & (2019-2024)
Table 69. VictoriaMetrics Key News & Latest Developments


List of Figures
Figure 1. Cloud-Native Time Series Database Product Picture
Figure 2. Cloud-Native Time Series Database Segment by Type in 2023
Figure 3. Cloud-Native Time Series Database Segment by Application in 2023
Figure 4. Global Cloud-Native Time Series Database Market Overview: 2022
Figure 5. Key Caveats
Figure 6. Global Cloud-Native Time Series Database Market Size: 2023 VS 2030 (US$, Mn)
Figure 7. Global Cloud-Native Time Series Database Revenue: 2019-2030 (US$, Mn)
Figure 8. The Top 3 and 5 Players Market Share by Cloud-Native Time Series Database Revenue in 2023
Figure 9. Segmentation by Type � Global Cloud-Native Time Series Database Revenue, (US$, Mn), 2023 & 2030
Figure 10. Segmentation by Type - Global Cloud-Native Time Series Database Revenue Market Share, 2019-2030
Figure 11. Segmentation by Application � Global Cloud-Native Time Series Database Revenue, (US$, Mn), 2023 & 2030
Figure 12. Segmentation by Application - Global Cloud-Native Time Series Database Revenue Market Share, 2019-2030
Figure 13. By Region - Global Cloud-Native Time Series Database Revenue Market Share, 2019-2030
Figure 14. By Country - North America Cloud-Native Time Series Database Revenue Market Share, 2019-2030
Figure 15. United States Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 16. Canada Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 17. Mexico Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 18. By Country - Europe Cloud-Native Time Series Database Revenue Market Share, 2019-2030
Figure 19. Germany Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 20. France Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 21. U.K. Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 22. Italy Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 23. Russia Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 24. Nordic Countries Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 25. Benelux Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 26. By Region - Asia Cloud-Native Time Series Database Revenue Market Share, 2019-2030
Figure 27. China Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 28. Japan Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 29. South Korea Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 30. Southeast Asia Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 31. India Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 32. By Country - South America Cloud-Native Time Series Database Revenue Market Share, 2019-2030
Figure 33. Brazil Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 34. Argentina Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 35. By Country - Middle East & Africa Cloud-Native Time Series Database Revenue Market Share, 2019-2030
Figure 36. Turkey Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 37. Israel Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 38. Saudi Arabia Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 39. UAE Cloud-Native Time Series Database Revenue, (US$, Mn), 2019-2030
Figure 40. Amazon Cloud-Native Time Series Database Revenue Year Over Year Growth (US$, Mn) & (2019-2024)
Figure 41. Microsoft Cloud-Native Time Series Database Revenue Year Over Year Growth (US$, Mn) & (2019-2024)
Figure 42. Google Cloud-Native Time Series Database Revenue Year Over Year Growth (US$, Mn) & (2019-2024)
Figure 43. InfluxData Cloud-Native Time Series Database Revenue Year Over Year Growth (US$, Mn) & (2019-2024)
Figure 44. Timescale Cloud-Native Time Series Database Revenue Year Over Year Growth (US$, Mn) & (2019-2024)
Figure 45. DataStax Cloud-Native Time Series Database Revenue Year Over Year Growth (US$, Mn) & (2019-2024)
Figure 46. QuestDB Cloud-Native Time Series Database Revenue Year Over Year Growth (US$, Mn) & (2019-2024)
Figure 47. OpenTSDB Cloud-Native Time Series Database Revenue Year Over Year Growth (US$, Mn) & (2019-2024)
Figure 48. Redpanda Cloud-Native Time Series Database Revenue Year Over Year Growth (US$, Mn) & (2019-2024)
Figure 49. VictoriaMetrics Cloud-Native Time Series Database Revenue Year Over Year Growth (US$, Mn) & (2019-2024)

Offer REPORT BUYING OPTIONS

USD GBP EURO YEN Single User Price
USD GBP EURO YEN Multi User Price
USD GBP EURO YEN Enterprise Price

---- OR ----

Frequently Asked Questions ?

  • Upto 24 hrs - Working days
  • Upto 48 hrs max - Weekends and public holidays
  • Single User License
    A license granted to one user. Rules or conditions might be applied for e.g. the use of electric files (PDFs) or printings, depending on product.

  • Multi user License
    A license granted to multiple users.

  • Site License
    A license granted to a single business site/establishment.

  • Corporate License, Global License
    A license granted to all employees within organisation access to the product.
  • Online Payments with PayPal and CCavenue
  • Wire Transfer/Bank Transfer
  • Email
  • Hard Copy

Our Key Features

  • Data Accuracy and Reliability
  • Data Security
  • Customized Research
  • Trustworthy
  • Competitive Offerings
check discount